Abstract

This study presents a first attempt to explore new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method, with focus on non-Lévy-type shells that are hard to tackle by classical analytic methods due to the intractable boundary-value problems of high-order partial differential equations. Compared with the conventional Lagrangian-system-based expression to be solved in the Euclidean space, the present description of the problems is within the Hamiltonian system, with the solution procedure implemented in the symplectic space, incorporating formulation of a symplectic eigenvalue problem and symplectic eigen expansion. Specifically, an original problem is first converted into two subproblems, which are solved by the above strategy to yield the symplectic solutions. The analytic frequency and mode shape solutions are then obtained by the requirement of the equivalence between the original problem and the superposition of subproblems. Comprehensive results for representative non-Lévy-type shells are tabulated or plotted, all of which are well validated by satisfactory agreement with the numerical finite element method. Due to the strictness of mathematical derivation and accuracy of solution, the developed method provides a solid approach for seeking more analytic solutions.

References

References
1.
Leissa
,
A. W.
,
1973
,
Vibration of Shells, Scientific and Technical Information Office
,
NASA
,
Washington, DC
.
2.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
Auckland
.
3.
Jiang
,
S.
,
Yang
,
T.
,
Li
,
W.
, and
Du
,
J.
,
2013
, “
Vibration Analysis of Doubly Curved Shallow Shells With Elastic Edge Restraints
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
034502
. 10.1115/1.4023146
4.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C.
,
2015
, “
Free Vibration of Curvilinearly Stiffened Shallow Shells
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031006
. 10.1115/1.4029360
5.
Li
,
H.
,
Pang
,
F.
,
Li
,
Y.
, and
Gao
,
C.
,
2019
, “
Application of First-Order Shear Deformation Theory for the Vibration Analysis of Functionally Graded Doubly-Curved Shells of Revolution
,”
Compos. Struct.
,
212
, pp.
22
42
. 10.1016/j.compstruct.2019.01.012
6.
Monterrubio
,
L.
,
2009
, “
Free Vibration of Shallow Shells Using the Rayleigh-Ritz Method and Penalty Parameters
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
10
), pp.
2263
2272
. 10.1243/09544062JMES1442
7.
Qatu
,
M. S.
, and
Asadi
,
E.
,
2012
, “
Vibration of Doubly Curved Shallow Shells With Arbitrary Boundaries
,”
Appl. Acoust.
,
73
(
1
), pp.
21
27
. 10.1016/j.apacoust.2011.06.013
8.
Kang
,
J. H.
,
2015
, “
Vibration Analysis of Shallow or Deep, Complete Parabolic Shells With Variable Thickness
,”
KSCE J. Civil Eng.
,
19
(
7
), pp.
2172
2178
. 10.1007/s12205-015-1397-6
9.
Jin
,
G.
,
Shi
,
S.
,
Su
,
Z.
,
Li
,
S.
, and
Liu
,
Z.
,
2015
, “
A Modified Fourier-Ritz Approach for Free Vibration Analysis of Laminated Functionally Graded Shallow Shells With General Boundary Conditions
,”
Int. J. Mech. Sci.
,
93
, pp.
256
269
. 10.1016/j.ijmecsci.2015.02.006
10.
Wang
,
Q.
,
Cui
,
X.
,
Qin
,
B.
, and
Liang
,
Q.
,
2017
, “
Vibration Analysis of the Functionally Graded Carbon Nanotube Reinforced Composite Shallow Shells With Arbitrary Boundary Conditions
,”
Compos. Struct.
,
182
, pp.
364
379
. 10.1016/j.compstruct.2017.09.043
11.
Kurpa
,
L.
,
Shmatko
,
T.
, and
Awrejcewicz
,
J.
,
2019
, “
Vibration Analysis of Laminated Functionally Graded Shallow Shells With Clamped Cutout of the Complex Form by the Ritz Method and the R-Functions Theory
,”
Lat. Am. J. Solids Struct.
,
16
(
1
), p.
UNSP e95
. 10.1590/1679-78254911
12.
Yang
,
C.
,
Jin
,
G.
,
Zhang
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Unified Three-Dimensional Method for Vibration Analysis of the Frequency-Dependent Sandwich Shallow Shells With General Boundary Conditions
,”
Appl. Math. Model.
,
66
, pp.
59
76
. 10.1016/j.apm.2018.09.016
13.
Sahoo
,
S.
, and
Chakravorty
,
D.
,
2005
, “
Finite Element Vibration Characteristics of Composite Hypar Shallow Shells With Various Edge Supports
,”
J. Vib. Contr.
,
11
(
10
), pp.
1291
1309
. 10.1177/1077546305057260
14.
Kapuria
,
S.
,
Patni
,
M.
, and
Yasin
,
M. Y.
,
2015
, “
A Quadrilateral Shallow Shell Element Based on the Third-Order Theory for Functionally Graded Plates and Shells and the Inaccuracy of Rule of Mixtures
,”
Eur. J. Mech. A Solids
,
49
, pp.
268
282
. 10.1016/j.euromechsol.2014.06.010
15.
Krysko
,
V. A.
,
Awrejcewicz
,
J.
,
Dobriyan
,
V.
,
Papkova
,
I. V.
, and
Krysko
,
V. A.
,
2019
, “
Size-Dependent Parameter Cancels Chaotic Vibrations of Flexible Shallow Nano-Shells
,”
J. Sound Vib.
,
446
, pp.
374
386
. 10.1016/j.jsv.2019.01.032
16.
Breslavsky
,
I.
,
Strel’nikova
,
E.
, and
Avramov
,
K.
,
2011
, “
Dynamics of Shallow Shells With Geometrical Nonlinearity Interacting With Fluid
,”
Comp. Struct.
,
89
(
5–6
), pp.
496
506
. 10.1016/j.compstruc.2010.12.006
17.
Zhang
,
X.
,
Zuo
,
H.
,
Liu
,
J.
,
Chen
,
X.
, and
Yang
,
Z.
,
2016
, “
Analysis of Shallow Hyperbolic Shell by Different Kinds of Wavelet Elements Based on B-Spline Wavelet on the Interval
,”
Appl. Math. Model.
,
40
(
3
), pp.
1914
1928
. 10.1016/j.apm.2015.09.036
18.
Budak
,
V.
,
Grigorenko
,
A. Y.
, and
Puzyrev
,
S.
,
2007
, “
Solution Describing the Natural Vibrations of Rectangular Shallow Shells With Varying Thickness
,”
Int. Appl. Mech.
,
43
(
4
), pp.
432
441
. 10.1007/s10778-007-0040-8
19.
Budak
,
V.
,
Grigorenko
,
A. Y.
, and
Puzyrev
,
S.
,
2007
, “
Free Vibrations of Rectangular Orthotropic Shallow Shells With Varying Thickness
,”
Int. Appl. Mech.
,
43
(
6
), pp.
670
682
. 10.1007/s10778-007-0066-y
20.
Fazelzadeh
,
S. A.
,
Rahmani
,
S.
,
Ghavanloo
,
E.
, and
Marzocca
,
P.
,
2019
, “
Thermoelastic Vibration of Doubly-Curved Nano-Composite Shells Reinforced by Graphene Nanoplatelets
,”
J. Therm. Stress.
,
42
(
1
), pp.
1
17
. 10.1080/01495739.2018.1524733
21.
Bahrami
,
S.
,
Shirmohammadi
,
F.
, and
Saadatpour
,
M. M.
,
2017
, “
Vibration Analysis of Thin Shallow Shells Using Spectral Element Method
,”
Appl. Math. Model.
,
44
, pp.
470
480
. 10.1016/j.apm.2017.02.001
22.
Shao
,
D.
,
Hu
,
S.
,
Wang
,
Q.
, and
Pang
,
F.
,
2017
, “
An Enhanced Reverberation-Ray Matrix Approach for Transient Response Analysis of Composite Laminated Shallow Shells With General Boundary Conditions
,”
Compos. Struct.
,
162
, pp.
133
155
. 10.1016/j.compstruct.2016.11.085
23.
Ghavanloo
,
E.
, and
Fazelzadeh
,
S.
,
2013
, “
Free Vibration Analysis of Orthotropic Doubly-Curved Shallow Shells Based on the Gradient Elasticity
,”
Compos., Part B
,
45
(
1
), pp.
1448
1457
. 10.1016/j.compositesb.2012.09.054
24.
Wattanasakulpong
,
N.
, and
Chaikittiratana
,
A.
,
2015
, “
An Analytical Investigation on Free Vibration of FGM Doubly Curved Shallow Shells With Stiffeners Under Thermal Environment
,”
Aerosp. Sci. Technol.
,
40
, pp.
181
190
. 10.1016/j.ast.2014.11.006
25.
Tran
,
M. T.
, and
Trinh
,
A. T.
,
2017
, “
Static and Vibration Analysis of Cross-Ply Laminated Composite Doubly Curved Shallow Shell Panels With Stiffeners Resting on Winkler–Pasternak Elastic Foundations
,”
Int. J. Adv. Struct. Eng.
,
9
(
2
), pp.
153
164
. 10.1007/s40091-017-0155-z
26.
Chen
,
H.
,
Wang
,
A.
,
Hao
,
Y.
, and
Zhang
,
W.
,
2017
, “
Free Vibration of FGM Sandwich Doubly-Curved Shallow Shell Based on a New Shear Deformation Theory With Stretching Effects
,”
Compos. Struct.
,
179
, pp.
50
60
. 10.1016/j.compstruct.2017.07.032
27.
Wang
,
A.
,
Chen
,
H.
,
Hao
,
Y.
, and
Zhang
,
W.
,
2018
, “
Vibration and Bending Behavior of Functionally Graded Nanocomposite Doubly-Curved Shallow Shells Reinforced by Graphene Nanoplatelets
,”
Res. Phys.
,
9
, pp.
550
559
. 10.1016/j.rinp.2018.02.062
28.
Oktem
,
A. S.
, and
Chaudhuri
,
R. A.
,
2007
, “
Levy Type Fourier Analysis of Thick Cross-Ply Doubly Curved Panels
,”
Compos. Struct.
,
80
(
4
), pp.
475
488
. 10.1016/j.compstruct.2006.05.020
29.
Lu
,
P.
,
Zhang
,
P. Q.
,
Lee
,
H. P.
,
Wang
,
C. M.
, and
Reddy
,
J. N.
,
2007
, “
Non-Local Elastic Plate Theories
,”
Proc. R. Soc. London, Ser. A
,
463
(
2088
), pp.
3225
3240
. 10.1098/rspa.2007.1903
30.
Sumelka
,
W.
,
2015
, “
Non-Local Kirchhoff-Love Plates in Terms of Fractional Calculus
,”
Arch. Civ. Mech. Eng.
,
15
(
1
), pp.
231
242
. 10.1016/j.acme.2014.03.006
31.
Ansari
,
R.
, and
Gholami
,
R.
,
2016
, “
Size-Dependent Nonlinear Vibrations of First-Order Shear Deformable Magneto-Electro-Thermo Elastic Nanoplates Based on the Nonlocal Elasticity Theory
,”
Int. J. Appl. Mech.
,
8
(
4
), p.
1650053
. 10.1142/S1758825116500538
32.
Rahimi
,
Z.
,
Sumelka
,
W.
,
Ahmadi
,
S. R.
, and
Baleanu
,
D.
,
2019
, “
Study and Control of Thermoelastic Damping of In-Plane Vibration of the Functionally Graded Nano-Plate
,”
J. Vib. Contr.
,
25
(
23–24
), pp.
2850
2862
. 10.1177/1077546319861009
33.
Tsai
,
P.-C.
, and
Fang
,
T.-H.
,
2007
, “
A Molecular Dynamics Study of the Nucleation, Thermal Stability and Nanomechanics of Carbon Nanocones
,”
Nanotechnology
,
18
(
10
), p.
105702
. 10.1088/0957-4484/18/10/105702
34.
Zaera
,
R.
,
Fernández-Sáez
,
J.
, and
Loya
,
J. A.
,
2013
, “
Axisymmetric Free Vibration of Closed Thin Spherical Nano-Shell
,”
Compos. Struct.
,
104
, pp.
154
161
. 10.1016/j.compstruct.2013.04.022
35.
Li
,
R.
,
Zhong
,
Y.
, and
Li
,
M.
,
2013
, “
Analytic Bending Solutions of Free Rectangular Thin Plates Resting on Elastic Foundations by a New Symplectic Superposition Method
,”
Proc. R. Soc. London, Ser. A
,
469
(
2153
), p.
20120681
. 10.1098/rspa.2012.0681
36.
Li
,
R.
,
Wang
,
H.
,
Zheng
,
X.
,
Xiong
,
S.
,
Hu
,
Z.
,
Yan
,
X.
,
Xiao
,
Z.
,
Xu
,
H.
, and
Li
,
P.
,
2019
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With Two Free Adjacent Edges by the Symplectic Superposition Method
,”
Eur. J. Mech. A Solids
,
76
, pp.
247
262
. 10.1016/j.euromechsol.2019.04.014
37.
Li
,
R.
,
Zheng
,
X.
,
Wang
,
P.
,
Wang
,
B.
,
Wu
,
H.
,
Cao
,
Y.
, and
Zhu
,
Z.
,
2019
, “
New Analytic Free Vibration Solutions of Orthotropic Rectangular Plates by a Novel Symplectic Approach
,”
Acta Mech.
,
230
(
9
), pp.
3087
3101
. 10.1007/s00707-019-02448-1
38.
Li
,
R.
,
Wang
,
P.
,
Zheng
,
X.
, and
Wang
,
B.
,
2018
, “
New Benchmark Solutions for Free Vibration of Clamped Rectangular Thick Plates and Their Variants
,”
Appl. Math. Lett.
,
78
, pp.
88
94
. 10.1016/j.aml.2017.11.006
39.
Li
,
R.
,
Wang
,
P.
,
Wang
,
B.
,
Zhao
,
C.
, and
Su
,
Y.
,
2018
, “
New Analytic Free Vibration Solutions of Rectangular Thick Plates With a Free Corner by the Symplectic Superposition Method
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031016
. 10.1115/1.4038951
40.
Li
,
R.
,
Zheng
,
X.
,
Yang
,
Y.
,
Huang
,
M.
, and
Huang
,
X.
,
2019
, “
Hamiltonian System-Based New Analytic Free Vibration Solutions of Cylindrical Shell Panels
,”
Appl. Math. Model.
,
76
, pp.
900
917
. 10.1016/j.apm.2019.07.020
41.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
42.
Lim
,
C. W.
, and
Xu
,
X. S.
,
2010
, “
Symplectic Elasticity: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050802
. 10.1115/1.4003700
43.
Lim
,
C. W.
,
Lu
,
C. F.
,
Xiang
,
Y.
, and
Yao
,
W.
,
2009
, “
On New Symplectic Elasticity Approach for Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
Int. J. Eng. Sci.
,
47
(
1
), pp.
131
140
. 10.1016/j.ijengsci.2008.08.003
44.
Lim
,
C. W.
,
2010
, “
Symplectic Elasticity Approach for Free Vibration of Rectangular Plates
,”
Adv. Vib. Eng.
,
9
(
2
), pp.
159
163
.
45.
Hu
,
W.
,
Zhang
,
C.
, and
Deng
,
Z.
,
2020
, “
Vibration and Elastic Wave Propagation in Spatial Flexible Damping Panel Attached to Four Special Springs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
84
, p.
105199
. 10.1016/j.cnsns.2020.105199
46.
Hu
,
W.
,
Wang
,
Z.
,
Zhao
,
Y.
, and
Deng
,
Z.
,
2020
, “
Symmetry Breaking of Infinite-Dimensional Dynamic System
,”
Appl. Mat. Lett.
,
103
, p.
106207
. 10.1016/j.aml.2019.106207
47.
ABAQUS
,
2013
,
Analysis User’s Guide V6.13
,
Dassault Systèmes
,
Pawtucket, RI
.
48.
Giorgio
,
I.
,
Rizzi
,
N. L.
, and
Turco
,
E.
,
2017
, “
Continuum Modelling of Pantographic Sheets for Out-of-Plane Bifurcation and Vibrational Analysis
,”
Proc. R. Soc. London, Ser. A
,
473
(
2207
), p.
20170636
. 10.1098/rspa.2017.0636
49.
Giorgio
,
I.
,
Dell'Isola
,
F.
, and
Steigmann
,
D. J.
,
2019
, “
Edge Effects in Hypar Nets
,”
C. R. Mec.
,
347
(
2
), pp.
114
123
. 10.1016/j.crme.2019.01.003
You do not currently have access to this content.