Abstract

For a larger depth of cutting above a certain critical value, self-excited vibrations occur in case of milling operations. This phenomenon of unstable milling tool vibrations is called chatter and is the main cause of the workpiece surface finish deterioration. The working life of the milling tool decreases substantially if the chatter is ignored. Active chatter control technique using the fractional order control methodology is investigated in the present work. Controller parameters are optimized by using the pattern search optimization technique. Electromagnetic actuators are used to generate the required control forces. The proposed technique is compared with the optimal loop shaping (LS) robust controller and optimal traditional proportional-derivative controller. It has been observed that the chatter can be avoided with relatively much less amplitude of control forces using the proposed controller. This aspect not only reduces the size of the required actuators but substantially reduces the control energy required to maintain stability. With the proposed controller, there is 168% saving in the control energy compared with the widely used robust control strategy. The robustness properties of the proposed controller are comparable with the loop shaping robust controller. Experimental results verify the efficiency and robustness of the proposed method.

References

References
1.
Chenxi
,
W.
,
Zhang
,
X.
,
Yan
,
R.
,
Chen
,
X.
, and
Cao
,
H.
,
2019
, “
Multi Harmonic Spindle Speed Variation for Milling Chatter Suppression and Parameters Optimization
,”
Precis. Eng.
,
55
, pp.
268
274
. 10.1016/j.precisioneng.2018.09.017
2.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2016
, “
Stability Analysis of Milling Processes With Periodic Spindle Speed Variation Via the Variable-Step Numerical Integration Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114501
. 10.1115/1.4033043
3.
Yilmaz
,
A.
,
Al-Regib
,
E.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
. 10.1115/1.1378794
4.
Fansen
,
K.
,
Peng
,
L.
, and
Xingang
,
Z.
,
2011
, “
Simulation and Experimental Research on Chatter Suppression Using Chaotic Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
133
(
1
), p.
014502
. 10.1115/1.4003476
5.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3
), pp.
664
686
. 10.1016/j.jsv.2008.03.045
6.
Dombovari
,
Z.
,
Altintas
,
Y.
, and
Stepan
,
G.
,
2010
, “
The Effect of Serration on Mechanics and Stability of Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
511
520
. 10.1016/j.ijmachtools.2010.03.006
7.
Yusoff
,
A. R.
, and
Sims
,
N.
,
2011
, “
Optimisation of Variable Helix Tool Geometry for Regenerative Chatter Mitigation
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
133
141
. 10.1016/j.ijmachtools.2010.10.004
8.
Sellmeier
,
V.
, and
Denkena
,
B.
,
2011
, “
Stable Islands in the Stability Chart of Milling Processes Due to Unequal Tooth Pitch
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
152
164
. 10.1016/j.ijmachtools.2010.09.007
9.
Denkena
,
B.
, and
Gümmer
,
O.
,
2012
, “
Process Stabilization With an Adaptronic Spindle System
,”
Prod. Eng.
,
6
(
4
), pp.
485
492
. 10.1007/s11740-012-0397-3
10.
Sallese
,
L.
,
Scippa
,
A.
,
Grossi
,
N.
, and
Campatelli
,
G.
,
2016
, “
Investigating Actuation Strategies in Active Fixtures for Chatter Suppression
,”
Procedia CIRP
,
46
, pp.
311
314
. 10.1016/j.procir.2016.04.073
11.
Sallese
,
L.
,
Innocenti
,
G.
,
Grossi
,
N.
,
Scippa
,
A.
,
Flores
,
R.
,
Basso
,
M.
, and
Campatelli
,
G.
,
2017
, “
Mitigation of Chatter Instabilities in Milling Using an Active Fixture With a Novel Control Strategy
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9
), pp.
2771
2787
. 10.1007/s00170-016-9831-6
12.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
Y.
,
Cao
,
H.
, and
Chen
,
X.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression Via Piezoelectric Stack Actuators
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
53
66
. 10.1016/j.ijmachtools.2017.10.002
13.
Kern
,
S.
,
Schiffler
,
A.
,
Nordmann
,
R.
, and
Abele
,
E.
,
2008
, “
Modelling and Active Damping of a Motor Spindle With Speed-Dependent Dynamics
,”
Institution of Mechanical Engineers—9th International Conference on Vibrations in Rotating Machinery
, Vol.
1
, pp.
465
475
.
14.
Dohner
,
J. L.
,
Lauffer
,
J. P.
,
Hinnerichs
,
T. D.
,
Shankar
,
N.
,
Regelbrugge
,
M.
,
Kwan
,
C.-M.
,
Xu
,
R.
,
Winterbauer
,
B.
, and
Bridger
,
K.
,
2004
, “
Mitigation of Chatter Instabilities in Milling by Active Structural Control
,”
J. Sound Vib.
,
269
(
1
), pp.
197
211
. 10.1016/S0022-460X(03)00069-5
15.
Graham
,
E.
,
Mehrpouya
,
M.
,
Nagamune
,
R.
, and
Park
,
S. S.
,
2014
, “
Robust Prediction of Chatter Stability in Micro Milling Comparing Edge Theorem and LMI
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
29
39
. 10.1016/j.cirpj.2013.09.002
16.
Hajdu
,
D.
,
Insperger
,
T.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2017
, “
Prediction of Robust Stability Boundaries for Milling Operations With Extended Multi-Frequency Solution and Structured Singular Values
,”
J. Manuf. Process.
,
30
, pp.
281
289
. 10.1016/j.jmapro.2017.09.015
17.
Löser
,
M.
,
Otto
,
A.
,
Ihlenfeldt
,
S.
, and
Radons
,
G.
,
2018
, “
Chatter Prediction for Uncertain Parameters
,”
Adv. Manuf.
,
6
(
3
), pp.
319
333
. 10.1007/s40436-018-0230-0
18.
Hajdu
,
D.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2017
, “
Robust Stability Analysis of Machining Operations
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1
), pp.
45
54
. 10.1007/s00170-016-8715-0
19.
van Dijk
,
N. J. M.
,
Wouw
,
N. V. D.
,
Doppenberg
,
E.
, and
Han
,
O.
,
2010
, “
Chatter Control in the High-Speed Milling Process Using mu-Synthesis
,”
Am. Control Conf.
,
2010
, pp.
6121
6126
. 10.1109/acc.2010.5531589
20.
van Dijk
,
N. J. M.
,
Wouw
,
N. V. D.
,
Doppenberg
,
E. J. J.
,
Oosterling
,
H. A. J.
, and
Nijmeijer
,
H.
,
2012
, “
Robust Active Chatter Control in the High-Speed Milling Process
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
901
917
. 10.1109/TCST.2011.2157160
21.
van de Wouw
,
N.
,
van Dijk
,
N. J. M.
,
Schiffler
,
A.
,
Nijmeijer
,
H.
, and
Abele
,
E.
,
2017
, “Experimental Validation of Robust Chatter Control for High-Speed Milling Processes,”
Time Delay Systems, Advances in Delays and Dynamics
,
N.
Silviu-Iulian
, ed., Vol.
7
,
Springer
,
London
, pp.
315
331
.
22.
van de Wouw
,
N.
,
van Dijk
,
N. J. M.
, and
Nijmeijer
,
H.
,
2015
, “
Pyragas-type Feedback Control for Chatter Mitigation in High-Speed Milling
,”
IFAC-PapersOnLine
,
48
(
12
), pp.
334
339
. 10.1016/j.ifacol.2015.09.400
23.
Zhang
,
X.
,
Wang
,
C.
,
Liu
,
J.
,
Yan
,
R.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Robust Active Control Based Milling Chatter Suppression With Perturbation Model via Piezoelectric Stack Actuators
,”
Mech. Syst. Signal Process.
,
120
, pp.
808
835
. 10.1016/j.ymssp.2018.10.043
24.
Shi
,
H.
,
Cao
,
X.
,
Zhang
,
X.
, and
Chen
,
X.
,
2019
, “
A Chatter Mitigation Technique in Milling Based on H Infinity-ADDPMS and Piezoelectric Stack Actuators
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2233
2248
. 10.1007/s00170-018-2913-x
25.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
J.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Adaptive Vibration Reshaping Based Milling Chatter Suppression
,”
Int. J. Mach. Tools Manuf.
,
141
, pp.
30
35
. 10.1016/j.ijmachtools.2019.04.001
26.
Zhang
,
H.-T.
,
Wu
,
Y.
,
He
,
D.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
54
61
. 10.1016/j.ijmachtools.2015.01.002
27.
Li
,
D.
,
Cao
,
H.
,
Zhang
,
X.
,
Chen
,
X.
, and
Yan
,
R.
,
2019
, “
Model Predictive Control Based Active Chatter Control in Milling Process
,”
Mech. Syst. Signal Process.
,
128
, pp.
266
281
. 10.1016/j.ymssp.2019.03.047
28.
Bernal
,
J.
,
Gómez-Aguilar
,
J. F.
,
Cordova
,
T.
,
Guzman-Cabrera
,
R.
, and
Rosales-Garc'ia
,
J. J.
,
2012
, “
Fractional Mechanical Oscillators
,”
Revista Mexicana de F'isica
,
58
, pp.
348
352
.
29.
Gómez-Aguilar
,
J. F.
,
Yepez-Martínez
,
H.
,
Ramón
,
C.
,
Orduña
,
I.
,
Escobar Jiménez
,
R.
, and
Olivares Peregrino
,
V.
,
2015
, “
Modeling of a Mass-Spring-Damper System by Fractional Derivatives With and Without a Singular Kernel
,”
Entropy
,
17
(
12
), pp.
6289
6303
. 10.3390/e17096289
30.
Morales-Delgado
,
V. F.
,
Gómez-Aguilar
,
J. F.
,
Taneco-Hernández
,
M. A.
, and
Escobar-Jiménez
,
R. F.
,
2018
, “
A Novel Fractional Derivative With Variable- and Constant-Order Applied to a Mass-Spring-Damper System
,”
Eur. Phys. J. Plus
,
133
(
2
), pp.
78
88
. 10.1140/epjp/i2018-11905-4
31.
Sene
,
N.
, and
Gómez Aguilar
,
J. F.
,
2019
, “
Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives
,”
Fractal Fractional
,
3
(
39
), pp.
1
15
. 10.3390/fractalfract3030039
32.
Abro
,
K. A.
, and
Gómez-Aguilar
,
J. F.
,
2019
, “
A Comparison of Heat and Mass Transfer on a Walter’s-B Fluid via Caputo-Fabrizio Versus Atangana-Baleanu Fractional Derivatives Using the Fox-H Function
,”
Eur. Phys. J. Plus
,
134
(
3
), pp.
101
109
. 10.1140/epjp/i2019-12507-4
33.
Xie
,
C.
,
Wu
,
Y.
, and
Liu
,
Z.
,
2018
, “
Modeling and Active Vibration Control of Lattice Grid Beam With Piezoelectric Fiber Composite Using Fractional Order PDμ Algorithm
,”
Compos. Struct.
,
198
, pp.
126
134
. 10.1016/j.compstruct.2018.05.060
34.
Shah
,
P.
, and
Agashe
,
S.
,
2016
, “
Review of Fractional PID Controller
,”
Mechatronics
,
38
, pp.
29
41
. 10.1016/j.mechatronics.2016.06.005
35.
Gu
,
D. W.
,
Petkov
,
P. H.
, and
Konstantinov
,
M. M.
,
2005
,
Robust Control Design With MATLAB
,
Springer
,
London
.
36.
Bozorg-Hadda
,
O.
,
Solgi
,
M.
, and
Loáiciga
,
H. A.
,
2017
,
Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization
,
Wiley
,
New York
.
37.
Joo
,
S.
, and
Seo
,
J. H.
,
1997
, “
Design and Analysis of the Nonlinear Feedback Linearizing Control for an Electromagnetic Suspension System
,”
5
(
1
), pp.
135
144
. 10.1109/87.553672
You do not currently have access to this content.