Abstract

To address various tire vibration characteristics such as noise, vibration, and harshness, it is necessary to study the tire dynamic performance. In this paper, we focus on investigating the influence of static loading on radial (in-plane) and bending modes and their frequencies of a tire. To model the effect, we first identify important tire parameters, termed as modal parameters, based on three-dimensional ring model and three-dimensional finite element results under free-free conditions without and with temperature variations. After finding the parameters, we have used three-dimensional flexible ring model in which both in-plane and bending modes are considered under static loading. When load is applied, tire behavior changes and it becomes more stiffer. Thus, it fixes the tire to the road and increases the contact region. In this paper, we define this contact region over θf < θ < 2π and the region 0 < θ < θf can be considered free-free. Subsequently, we assume the expression of radial and bending modes in terms of generalized coordinates satisfying the above boundary conditions and obtain kinetic and potential energy by integrating it over 0 < θ < θf. The unknown coordinate is obtained by satisfying the governing conditions. Finally, corresponding mode shapes and frequencies are obtained. The assumed modes and frequencies are validated with three-dimensional finite element model using abaqus. The same procedure can be extended to compute modes and frequencies as a function of temperature under static loading for a constant tire pressure.

References

References
1.
Dai Vu
,
T.
,
Duhamel
,
D.
,
Abbadi
,
Z.
,
Yin
,
H.-P.
, and
Gaudin
,
A.
,
2017
, “
A Nonlinear Circular Ring Model With Rotating Effects for Tire Vibration
,”
J. Sound Vib.
,
388
, pp.
245
271
. https://doi.org/10.1016/j.jsv.2016.10.023
2.
Muggleton
,
J. M.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2003
, “
Vibrational Response Prediction of a Pneumatic Tyre Using An Orthotropic Two-Plate Wave Model
,”
J. Sound Vib.
,
264
(
4
), pp.
929
950
. 10.1016/S0022-460X(02)01190-2
3.
Matsubara
,
M.
,
Tajiri
,
D.
,
Ise
,
T.
, and
Kawamura
,
S.
,
2017
, “
Vibrational Response Analysis of Tires Using a Three-Dimensional Flexible Ring-Based Model
,”
J. Sound Vib.
,
408
, pp.
368
382
. 10.1016/j.jsv.2017.07.041
4.
Liu
,
Z.
, and
Gao
,
Q.
,
2017
, “
In-Plane Vibration Modal Analysis of Heavy-Loaded Radial Tire With a Larger Flat Ratio
,”
J. Vibroeng.
,
19
(
7
), pp.
5327
5345
. 10.21595/jve.2017.18706
5.
Li
,
B.
,
Yang
,
X.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2015
, “
In-Plane Flexible Ring Tire Model Development for Ride Comfort Braking/Driving Performance Analysis Under Straight-Line Driving Condition
,” SAE Technical Paper, p.
0628
.
6.
Zegelaar
,
P. W. A.
,
1997
, “
Modal Analysis of Tire In-plane Vibration
,” SAE International, SAE 971101.
7.
Yam
,
L. H.
,
Guan
,
D. H.
, and
Zhang
,
A. Q.
,
2000
, “
Three-Dimensional Mode Shapes of a Tire Using Experimental Modal Analysis
,”
Exp. Mech.
,
40
(
4
), pp.
369
375
. 10.1007/BF02326482
8.
Pieters
,
R. S.
,
2007
, “
Experimental Modal Analysis of An Automobile Tire Under Static Load
,”
DCT rapporten
,
112
, pp.
1
24
,
Technische Universiteit Eindhoven
,
Eindhoven
. https://pure.tue.nl/ws/files/4362347/656612.pdf
9.
Huang
,
S. C.
,
1992
, “
The Vibration of Rolling Tyres in Ground Contact
,”
Int. J. Veh. Des.
,
13
(
1
), pp.
78
95
.
10.
Abd-Elsalam
,
A.
,
Gohary
,
M. A.
, and
El-Gamal
,
H. A.
,
2017
, “
Modal Analysis on Tire With Respect to Different Parameters
,”
Alexandria Eng. J.
,
56
(
4
), pp.
345
357
. 10.1016/j.aej.2016.09.022
11.
Tang
,
T.
,
Johnson
,
D.
,
Smith
,
R. E.
, and
Felicelli
,
S. D.
,
2014
, “
Numerical Evaluation of the Temperature Field of Steady-State Rolling Tires
,”
Appl. Math. Model.
,
38
(
5–6
), pp.
1622
1637
. 10.1016/j.apm.2013.08.033
12.
Cho
,
J. R.
,
Lee
,
H. W.
,
Jeong
,
W. B.
,
Jeong
,
K. M.
, and
Kim
,
K. W.
,
2013
, “
Numerical Estimation of Rolling Resistance and Temperature Distribution of 3-D Periodic Patterned Tire
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
86
96
. 10.1016/j.ijsolstr.2012.09.004
13.
Ebbott
,
T. G.
,
Hohman
,
R. L.
,
Jeusette
,
J. P.
, and
Kerchman
,
V.
,
1999
, “
Tire Temperature and Rolling Resistance Prediction With Finite Element Analysis
,”
Tire Sci. Technol.
,
27
(
1
), pp.
2
21
. 10.2346/1.2135974
14.
Lin
,
Y. J.
, and
Hwang
,
S. J.
,
2004
, “
Temperature Prediction of Rolling Tires by Computer Simulation
,”
Math. Comput. Simul.
,
67
(
3
), pp.
235
249
. 10.1016/j.matcom.2004.07.002
15.
Zhang
,
J.
,
Xue
,
F.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Han
,
S.
,
2018
, “
Strain Energy-Based Rubber Fatigue Life Prediction Under the Influence of Temperature
,”
R. Soc. Open Sci.
,
5
(
10
), p.
180951
. 10.1098/rsos.180951
16.
Li
,
X.
,
Dong
,
Y.
,
Li
,
Z.
, and
Xia
,
Y.
,
2011
, “
Experimental Study on the Temperature Dependence of Hyperelastic Behavior of Tire Rubbers Under Moderate Finite Deformation
,”
Rubber Chem. Technol.
,
84
(
2
), pp.
215
228
. 10.5254/1.3577534
17.
Colakoglu
,
M.
,
2008
, “
Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites
,”
Adv. Compos. Mater.
,
17
(
2
), pp.
111
124
. 10.1163/156855108X314751
18.
Li
,
Y.
,
Liu
,
W. Y.
, and
Frimpong
,
S.
,
2012
, “
Effect of Ambient Temperature on Stress, Deformation and Temperature of Dump Truck Tire
,”
Eng. Fail. Anal.
,
23
, pp.
55
62
. 10.1016/j.engfailanal.2012.02.004
19.
Tang
,
T.
,
Johnson
,
D.
,
Smith
,
R. E.
, and
Felicelli
,
S. D.
,
2014
, “
Numerical Evaluation of the Temperature Field of Steady-State Rolling Tires
,”
Appl. Math. Model.
,
38
(
5–6
), pp.
1622
1637
. 10.1016/j.apm.2013.08.033
20.
Abaqus
,
2016
,
Abaqus Documentation
,
Dassault System
,
RI
.
21.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
22.
Bibin
,
S.
, and
Pandey
,
A. K.
,
2017
, “
A Hybrid Approach to Model the Temperature Effect in Tire Forces and Moments
,”
SAE J. Passenger Cars Mech. Syst.
,
10
(
1
), pp.
25
37
. 10.4271/2017-01-9676
You do not currently have access to this content.