Abstract

Phononic crystals and metamaterials have attractive potential in elastic wave attenuation and guiding over specific frequency ranges. Different from traditional phononic crystals/metamaterials consisting of identical unit cells, a phononic crystal with coupled lanes is reported in this article for enhanced elastic wave attenuation in the low-frequency regime. The proposed phononic crystal takes advantages of destructive interference mechanism. A finitely length phononic crystal plate consisting of coupled lanes is considered for conceptual verification. The coupled lanes are designed to split the incident elastic wave into separated parts with a phase difference to produce destructive interference. Theoretical modeling and finite element method (FEM) analysis are presented. It is illustrated that significant elastic wave attenuation is realized when the phase difference of elastic waves propagating through the coupled lanes approximates π. Besides, multiple valleys in the transmission can be achieved in a broad frequency range with one at a frequency as low as 1.85 kHz with unit cells’ width and length of 25 mm and ten unit cells in one lane.

References

References
1.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
2.
Fang
,
N.
,
Lee
,
H.
,
Sun
,
C.
, and
Zhang
,
X.
,
2005
, “
Sub-Diffraction-Limited Optical Imaging With a Silver Superlens
,”
Science
,
308
(
5721
), p.
534
. 10.1126/science.1108759
3.
Pendry
,
J. B.
, and
Li
,
J.
,
2008
, “
An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak
,”
New J. Phys.
,
10
(
11
), p.
115032
. 10.1088/1367-2630/10/11/115032
4.
Landy
,
N. I.
,
Sajuyigbe
,
S.
,
Mock
,
J. J.
,
Smith
,
D. R.
, and
Padilla
,
W. J.
,
2008
, “
Perfect Metamaterial Absorber
,”
Phys. Rev. Lett.
,
100
(
20
), p.
207402
. 10.1103/PhysRevLett.100.207402
5.
Yang
,
J.
,
Huang
,
M.
,
Yang
,
C.
,
Peng
,
J.
, and
Chang
,
J.
,
2010
, “
An External Acoustic Cloak With N-Sided Regular Polygonal Cross Section Based on Complementary Medium
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
9
14
. 10.1016/j.commatsci.2010.03.050
6.
Bigoni
,
D.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Brun
,
M.
,
2013
, “
Elastic Metamaterials With Inertial Locally Resonant Structures: Application to Lensing and Localization
,”
Phys. Rev. B
,
87
(
17
), p.
174303
. 10.1103/PhysRevB.87.174303
7.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
. 10.1016/j.jsv.2013.08.014
8.
Yoo
,
Y. J.
,
Zheng
,
H. Y.
,
Kim
,
Y. J.
,
Rhee
,
J. Y.
,
Kang
,
J.-H.
,
Kim
,
K. W.
,
Cheong
,
H.
,
Kim
,
Y. H.
, and
Lee
,
Y. P.
,
2014
, “
Flexible and Elastic Metamaterial Absorber for Low Frequency, Based on Small-Size Unit Cell
,”
Appl. Phys. Lett.
,
105
(
4
), p.
041902
. 10.1063/1.4885095
9.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), p.
3966
. 10.1103/PhysRevLett.85.3966
10.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
055602
. 10.1103/PhysRevE.70.055602
11.
Climente
,
A.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2010
, “
Sound Focusing by Gradient Index Sonic Lenses
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104103
. 10.1063/1.3488349
12.
Wu
,
T.-T.
,
Chen
,
Y.-T.
,
Sun
,
J.-H.
,
Lin
,
S. S.
, and
Huang
,
T. J.
,
2011
, “
Focusing of the Lowest Antisymmetric Lamb Wave in a Gradient-Index Phonoic Crystal Plate
,”
Appl. Phys. Lett.
,
98
(
17
), p.
171911
. 10.1063/1.3583660
13.
Zhao
,
J.
,
Marchal
,
R.
,
Bonello
,
B.
, and
Boyko
,
O.
,
2012
, “
Efficient Focalization of Antisymmetric Lamb Wave in Gradient-Index Phonoic Crystal Plates
,”
Appl. Phys. Lett.
,
101
(
26
), p.
261905
. 10.1063/1.4773369
14.
Yan
,
X.
,
Zhu
,
R.
,
Huang
,
G.
, and
Yuan
,
F.-G.
,
2013
, “
Focusing Guided Waves Using Surface Bonded Elastic Metamaterials
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121901
. 10.1063/1.4821258
15.
Tol
,
S.
,
Degertekin
,
F. L.
, and
Erturk
,
A.
,
2016
, “
Gradient Index Phononic Crystal Lens-Based Enhancement of Elastic Wave Energy Harvesting
,”
Appl. Phys. Lett.
,
109
(
6
), p.
063902
. 10.1063/1.4960792
16.
Beck
,
B. S.
,
Cunefare
,
K. A.
,
Ruzzene
,
M.
, and
Collet
,
M.
,
2011
, “
Experimental Analysis of a Cantilever Beam With a Shunted Piezoelectric Periodic Array
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1177
1187
. 10.1177/1045389X11411119
17.
Xu
,
J.
,
Li
,
S.
, and
Tang
,
J.
,
2018
, “
Customized Shaping of Vibration Modes by Acoustic Metamaterial Synthesis
,”
Smart Mater. Struct.
,
27
(
4
), p.
045001
. 10.1088/1361-665X/aaad9f
18.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
. 10.1103/PhysRevLett.101.204301
19.
Mei
,
J.
,
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nat. Commun.
,
3
(
1
), p.
756
. 10.1038/ncomms1758
20.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), p.
2022
. 10.1103/PhysRevLett.71.2022
21.
Monsoriu
,
J. A.
,
Depine
,
R. A.
,
MartÝnez-Ricci
,
M. L.
, and
Silvestre
,
E.
,
2006
, “
Interaction Between Non-Bragg Band Gaps in 1D Metamaterial Photonic Crystals
,”
Opt. Express
,
14
(
26
), pp.
12958
12967
. 10.1364/OE.14.012958
22.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Wave Propagation Control in Beams Through Periodic Multi-Branch Shunts
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), p.
1567
. 10.1177/1045389X11408372
23.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
. 10.1115/1.4000784
24.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
. 10.1016/j.ijimpeng.2013.09.003
25.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
. 10.1063/1.4982717
26.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Longitudinal Wave Band Gaps in Metamaterial-Based Elastic Rods Containing Multi-Degree-of-Freedom Resonators
,”
New J. Phys.
,
14
(
3
), p.
033042
. 10.1088/1367-2630/14/3/033042
27.
Li
,
Y.
,
Liang
,
B.
,
Gu
,
Z.
,
Zou
,
X.
, and
Cheng
,
J.
,
2013
, “
Reflected Wavefront Manipulation Based on Ultrathin Planar Acoustic Metasurfaces
,”
Sci. Rep.
,
3
(
1
), p.
2546
. 10.1038/srep02546
28.
Chen
,
Y. Y.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
. 10.1115/1.4028378
29.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), p.
979
. 10.1088/0964-1726/10/5/314
30.
Li
,
Y.
,
Jiang
,
X.
,
Li
,
R.
,
Liang
,
B.
,
Zou
,
X.
,
Yin
,
L.
, and
Cheng
,
J.
,
2014
, “
Experimental Realization of Full Control of Reflected Waves With Subwavelength Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
2
(
6
), p.
064002
. 10.1103/PhysRevApplied.2.064002
31.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
(
1
), p.
5553
. 10.1038/ncomms6553
32.
Tang
,
K.
,
Qiu
,
C.
,
Ke
,
M.
,
Lu
,
J.
,
Ye
,
Y.
, and
Liu
,
Z.
,
2014
, “
Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces
,”
Sci. Rep.
,
4
(
1
), p.
6517
. 10.1038/srep06517
33.
Yuan
,
B.
,
Cheng
,
Y.
, and
Liu
,
X.
,
2015
, “
Conversion of Sound Radiation Pattern via Gradient Acoustic Metasurface With Space-Coiling Structure
,”
Appl. Phys. Express
,
8
(
2
), p.
027301
. 10.7567/APEX.8.027301
34.
Li
,
Y.
,
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J.
, and
Zhang
,
L.
,
2015
, “
Metascreen-Based Acoustic Passive Phased Array
,”
Phys. Rev. Appl.
,
4
(
2
), p.
024003
. 10.1103/PhysRevApplied.4.024003
35.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
. 10.1126/sciadv.1501595
36.
Zhu
,
H.
, and
Semperlotti
,
F.
,
2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034302
. 10.1103/PhysRevLett.117.034302
37.
Liu
,
Y.
,
Liang
,
Z.
,
Liu
,
F.
,
Diba
,
O.
,
Lamb
,
A.
, and
Li
,
J.
,
2017
, “
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces
,”
Phys. Rev. Lett.
,
119
(
3
), p.
034301
. 10.1103/PhysRevLett.119.034301
38.
Su
,
X.
,
Lu
,
Z.
, and
Norris
,
A. N.
,
2018
, “
Elastic Metasurfaces for Splitting SV- and P-Waves in Elastic Solids
,”
J. Appl. Phys.
,
123
(
9
), p.
091701
. 10.1063/1.5007731
39.
Hu
,
G.
,
Tang
,
L.
,
Das
,
R.
,
Gao
,
S.
, and
Liu
,
H.
,
2017
, “
Acoustic Metamaterials With Coupled Local Resonators for Broadband Vibration Suppression
,”
AIP Adv.
,
7
(
2
), p.
025211
. 10.1063/1.4977559
40.
Xu
,
J.
,
Yan
,
R.
, and
Tang
,
J.
,
2018
, “
Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity
,”
Appl. Sci.
,
8
(
9
), p.
1606
.
41.
Fang
,
X.
,
Wen
,
J.
,
Bonello
,
B.
,
Yin
,
J.
, and
Yu
,
D.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
. 10.1038/s41467-017-00671-9
42.
Khajehtourian
,
R.
, and
Hussein
,
M.
,
2014
, “
Dispersion Characteristics of a Nonlinear Elastic Metamaterial
,”
AIP Adv.
,
4
(
12
), p.
124308
. 10.1063/1.4905051
43.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1186
1193
. 10.1016/j.ijnonlinmec.2007.09.007
44.
Lee
,
W.-S.
,
Kim
,
D.-Z.
,
Kim
,
K.-J.
, and
Yu
,
J.-W.
,
2006
, “
Wideband Planar Monopole Antennas With Dual Band-Notched Characteristics
,”
IEEE Trans. Microwave Theory Tech.
,
54
(
6
), pp.
2800
2806
. 10.1109/TMTT.2006.874895
45.
Oh
,
T.
,
Lim
,
Y.-G.
,
Chae
,
C.-B.
, and
Lee
,
Y.
,
2015
, “
Dual-Polarization Slot Antenna With High Cross-Polarization Discrimination for Indoor Small-Cell MIMO Systems
,”
IEEE Antennas Wireless Propagation Lett.
,
14
(
1
), pp.
374
377
. 10.1109/LAWP.2014.2364517
46.
Deymier
,
P.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer
,
Berlin/Heidelberg, Germany
.
47.
Xu
,
J.
,
Zhang
,
X.
, and
Yan
,
R.
,
2020
, “
Coupled Piezoelectric Phononic Crystal for Adaptive Broadband Wave Attenuation by Destructive Interference
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091001
. 10.1115/1.4047205
48.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
. 10.1016/j.jsv.2014.01.009
You do not currently have access to this content.