Abstract

Low-frequency sound attenuation is often pursued using Helmholtz resonators (HRs). The introduction of a compliant wall around the acoustic cavity results in a two degrees-of-freedom (2DOF) system capable of more broadband sound absorption. In this study, we report the amplitude-dependent dynamic response of a compliant-walled HR and investigate the effectiveness of wall compliance to improve the absorption of sound in linear and nonlinear regimes. The acoustic-structure interactions between the conventional HR and the compliant wall result in non-intuitive responses when acted on by nonlinear amplitudes of excitation pressure. This paper formulates and studies a reduced order model to characterize the nonlinear dynamic response of the 2DOF HR with a compliant wall compared to that of a conventional rigid HR. Validated by experimental evidence, the modeling framework facilitates an investigation of strategies to achieve broadband sound attenuation, including by selection of wall material, wall thickness, geometry of the HR, and other parameters readily tuned by system design. The results open up new avenues for the development of efficient acoustic resonators exploiting the deflection of a compliant wall for suppression of extreme noise amplitudes.

References

1.
Berglund
,
B.
,
Hassmén
,
P.
, and
Job
,
R.
,
1996
, “
Sources and Effects of Low-Frequency Noise
,”
J. Acoust. Soc. Am.
,
99
(
5
), p.
2985
.
2.
Broner
,
N.
,
1978
, “
The Effects of Low Frequency Noise on People—A Review
,”
J. Sound Vib.
,
58
(
4
), pp.
483
500
.
3.
Horowitz
,
S.
,
Nishida
,
T.
,
Cattafesta
,
L.
, III
, and
Sheplak
,
M.
,
2002
, “
Characterization of a Compliant-Backplate Helmholtz Resonator for an Electromechanical Acoustic Liner
,”
Int. J. Aeroacoust.
,
1
(
2
), pp.
183
205
.
4.
Cui
,
S.
, and
Harne
,
R.
,
2019
, “
Soft Materials With Broadband and Near-Total Absorption of Sound
,”
Phys. Rev. Appl.
,
12
(
6
), p.
064059
.
5.
Pan
,
W.
,
Xu
,
X.
,
Li
,
J.
, and
Guan
,
Y.
,
2020
, “
Acoustic Damping Performance of Coupled Helmholtz Resonators With a Sharable Perforated Sidewall in the Presence of Grazing Flow
,”
Aerosp. Sci. Technol.
,
99
, p.
105573
.
6.
Tang
,
P.
, and
Sirignano
,
W.
,
1973
, “
Theory of a Generalized Helmholtz Resonator
,”
J. Sound Vib.
,
26
(
2
), pp.
247
262
.
7.
Tang
,
S.
,
2005
, “
On Helmholtz Resonators With Tapered Necks
,”
J. Sound Vib.
,
279
(
3–5
), pp.
1085
1096
.
8.
Selamet
,
A.
, and
Lee
,
I.
,
2003
, “
Helmholtz Resonator With Extended Neck
,”
J. Acoust. Soc. Am.
,
113
(
4
), pp.
1975
1985
.
9.
Cai
,
C.
,
Mak
,
C.
, and
Shi
,
X.
,
2017
, “
An Extended Neck Versus a Spiral Neck of the Helmholtz Resonator
,”
Appl. Acoust.
,
115
, pp.
74
80
.
10.
Selamet
,
A.
,
Xu
,
M.
,
Lee
,
I.
, and
Huff
,
N.
,
2005
, “
Helmholtz Resonator Lined With Absorbing Material
,”
J. Acoust. Soc. Am.
,
117
(
2
), pp.
725
733
.
11.
Liu
,
F.
,
Horowitz
,
S.
,
Nishida
,
T.
,
Cattafesta
,
L.
, and
Sheplak
,
M.
,
2007
, “
A Multiple Degree of Freedom Electromechanical Helmholtz Resonator
,”
J. Acoust. Soc. Am.
,
122
(
1
), pp.
291
301
.
12.
Abbad
,
A.
,
Rabenorosoa
,
K.
,
Ouisse
,
M.
, and
Atalla
,
N.
,
2018
, “
Adaptive Helmholtz Resonator Based on Electroactive Polymers: Modeling, Characterization, and Control
,”
Smart Mater. Struct.
,
27
(
10
), p.
105029
.
13.
Sugimoto
,
N.
,
Masuda
,
M.
, and
Hashiguchi
,
T.
,
2003
, “
Frequency Response of Nonlinear Oscillations of Air Column in a Tube With an Array of Helmholtz Resonators
,”
J. Acoust. Soc. Am.
,
114
(
4
), pp.
1772
1784
.
14.
Kim
,
S.
,
Kim
,
Y.
, and
Jang
,
J.
,
2006
, “
A Theoretical Model to Predict the Low-Frequency Sound Absorption of a Helmholtz Resonator Array
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1933
1936
.
15.
Cheng
,
Y.
,
Xu
,
J.
, and
Liu
,
X.
,
2008
, “
Broad Forbidden Bands in Parallel-Coupled Locally Resonant Ultrasonic Metamaterials
,”
Appl. Phys. Lett.
,
92
(
5
), p.
051913
.
16.
Seo
,
S.
, and
Kim
,
Y.
,
2005
, “
Silencer Design by Using Array Resonators for Low-Frequency Band Noise Reduction
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2332
2338
.
17.
Tang
,
S.
,
Ng
,
C.
, and
Lam
,
E.
,
2012
, “
Experimental Investigation of the Sound Absorption Performance of Compartmented Helmholtz Resonators
,”
Appl. Acoust.
,
73
(
9
), pp.
969
976
.
18.
Hu
,
G.
,
Tang
,
L.
, and
Cui
,
X.
,
2019
, “
On the Modelling of Membrane-Coupled Helmholtz Resonator and Its Application in Acoustic Metamaterial System
,”
Mech. Syst. Signal Process.
,
132
, pp.
595
608
.
19.
Griffin
,
S.
,
Lane
,
S.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
11
17
.
20.
Ruan
,
D.
, and
Zhang
,
E.
,
2014
, “
Effect of Compliant-Diaphragm Geometry on the Transmission Loss Characteristics of Helmholtz Resonators
,”
Noise Vib. Worldwide
,
45
(
11
), pp.
9
15
.
21.
Nudehi
,
S.
,
Duncan
,
G.
, and
Farooq
,
U.
,
2013
, “
Modeling and Experimental Investigation of a Helmholtz Resonator With a Flexible Plate
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041102
.
22.
Cui
,
S.
, and
Harne
,
R.
,
2020
, “
Acoustic-Structure Interaction in an Adaptive Helmholtz Resonator by Compliance and Constraint
,”
ASME J. Vib. Acoust.
,
142
(
2
), p.
021005
.
23.
Yu
,
G.
,
Zhang
,
Y.
, and
Shen
,
Y.
,
2011
, “
Nonlinear Amplitude-Frequency Response of a Helmholtz Resonator
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
024502
.
24.
Gourdon
,
E.
,
Ture Savadkoohi
,
A.
, and
Alamo Vargas
,
V.
,
2018
, “
Targeted Energy Transfer From One Acoustical Mode to an Helmholtz Resonator With Nonlinear Behavior
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061005
.
25.
Vargas
,
V.
,
Gourdon
,
E.
, and
Savadkoohi
,
A.
,
2018
, “
Nonlinear Softening and Hardening Behavior in Helmholtz Resonators for Nonlinear Regimes
,”
Nonlinear Dyn.
,
91
(
1
), pp.
217
231
.
26.
Keller
,
J.
, and
Zauner
,
E.
,
1995
, “
On the Use of Helmholtz Resonators as Sound Attenuators
,”
Z. Angew. Math. Phys.
,
46
(
3
), pp.
297
327
.
27.
Boullosa
,
R.
, and
Orduña-Bustamante
,
F.
,
1992
, “
The Reaction Force on a Helmholtz Resonator Driven at High Sound Pressure Amplitudes
,”
Am. J. Phys.
,
60
(
8
), pp.
722
726
.
28.
Achilleos
,
V.
,
Richoux
,
O.
, and
Theocharis
,
G.
,
2016
, “
Coherent Perfect Absorption Induced by the Nonlinearity of a Helmholtz Resonator
,”
J. Acoust. Soc. Am.
,
140
(
1
) pp.
EL94
EL100
.
29.
Singh
,
D.
, and
Rienstra
,
S.
,
2014
, “
Nonlinear Asymptotic Impedance Model for a Helmholtz Resonator Liner
,”
J. Sound Vib.
,
333
(
15
), pp.
3536
3549
.
30.
Kinsler
,
L.
,
Frey
,
A.
, and
Coppens
,
A. S. J.
,
2000
,
Fundamentals of Acoustics
,
Wiley
,
New York
.
31.
Virgin
,
L. N.
,
2007
,
Vibration of Axially Loaded Structures
,
Cambridge University Press
,
Cambridge
.
32.
Leissa
,
A. W.
,
1969
,
Vibration of Plates
,
Scientific and Technical Information Division, National Aeronautics and Space Administration
,
Washington, DC
.
33.
Leissa
,
A.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.
34.
Dickey
,
N.
,
Selamet
,
A.
, and
Novak
,
J.
,
2000
, “
The Effect of High-Amplitude Sound on the Attenuation of Perforated Tube Silencers
,”
J. Acoust. Soc. Am.
,
108
(
3
), pp.
1068
1081
.
35.
Kela
,
L.
,
2009
, “
Resonant Frequency of an Adjustable Helmholtz Resonator in a Hydraulic System
,”
Arch. Appl. Mech.
,
79
(
12
), pp.
1115
1125
.
You do not currently have access to this content.