Abstract

A non-linear dynamic model of a multi-mesh involute spur pinion-driven face-gear split-torque drive system is developed. The lumped mass model consists of five pinions and two face-gears with seven rotational degrees-of-freedom. Model includes two inputs, two outputs, and three idler gears meshing with two identical face-gears at the bottom and top of the assembly. Face-gear tooth form and corresponding spur gear teeth are established by differential geometry and the theory of gearing. Face-gear drive system mesh stiffnesses are established by utilizing finite strip method for the first time in the literature. The mesh stiffness and damping are time-variant. The model includes clearance-type non-linearity. The harmonic balance method is utilized to solve the non-linear differential equations of motion. The results are compared with the time simulation results. The stability is checked with Floquet theory and bifurcation diagrams from Poincare sections. The model is fully capable of generating the tooth geometries, mesh stiffnesses, and gear train dynamics without reliance on any package programs. Hence, the model provides flexibility and fast computation for parametric studies compared to existing literature. The effect of the pinions’ orientations on the face-gear is investigated to evaluate the mesh phasing effects among system dynamic response. The effect of sub-harmonic motion on the dynamic response of the split-torque face-gear system is also demonstrated for the first time in the literature. The case studies demonstrate that sub-harmonic resonance peaks are avoided.

References

1.
Litvin
,
F. L.
,
Wang
,
J.-C.
,
Bossler
,
R. B.
,
Chen
,
Y.-J.
,
Heath
,
G.
, and
Lewicki
,
D. G.
,
1994
, “
Application of Face-Gear Drives in Helicopter Transmissions
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
672
676
.
2.
Heath
,
G. F.
,
Filler
,
R. R.
, and
Tan
,
J.
,
2002
,
Development of Face Gear Technology for Industrial and Aerospace Power Transmission
.
3.
Grendel
,
H. F.
,
1996
, “
Cylkro Gears: An Alternative in Mechanical Power Transmission
,”
Gear Technol. J. Gear Manuf.
,
13
(
3
), pp.
26
31
.
4.
Basstein
,
G.
,
2000
, “
Calculation, Manufacturing and Applications of Cylkro Angular Face Gear Transmissions
,” Troy (Detroit).
5.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zanzi
,
C.
, and
Pontiggia
,
M.
,
2002
, “
Design, Generation, and Stress Analysis of Two Versions of Geometry of Face-Gear Drives
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1179
1211
.
6.
Stadtfeld
,
H.
,
2010
, “
Coniface Face Gear Cutting and Grinding
,”
Gear Solutions
,
8
(
90
), pp.
38
47
.
7.
He
,
S.
,
Gmirya
,
Y.
,
Mowka
,
F.
,
Meyer
,
B. W.
, and
Ames
,
E. C.
,
2006
, “
Trade Study on Different Gear Reduction Ratios of the 5100 HP RDS-21 Demonstrator Gear Box
,”
AHS 62nd Annual Forum
,
Phoenix, AZ
,
May 9–11
.
8.
Gilbert
,
R.
,
Craig
,
G.
,
Filler
,
R.
,
Hamilton
,
W.
, and
Hawkins
,
J.
,
2008
, “
3400 Hp Apache Block III Improved Drive System
,”
AHS 64th Annual Forum
,
Montreal, Canada
,
Apr. 29–May 1
.
9.
Litvin
,
F. L.
,
Wang
,
J.-C.
,
Bossler
,
R. B.
, Jr.
,
Chen
,
Y.-J. D.
,
Heath
,
G.
, and
Lewicki
,
D. G.
,
1992
, “
Face-Gear Drives: Design, Analysis, and Testing for Helicopter Transmission Applications
,”
AGMA 1992 Fall Technical Meeting
,
Baltimore, MD
,
Oct. 26–28
.
10.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
New York
, pp.
508
546
.
11.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Wang
,
J. C.
,
Bossler
,
R. B.
, and
Chen
,
Y. J. D.
,
1992
, “
Design and Geometry of Face-Gear Drives
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
642
647
.
12.
Litvin
,
F. L.
,
Egelja
,
A.
,
Tan
,
J.
,
Chen
,
D. Y. D.
, and
Heath
,
G.
,
2000
, “
Handbook on Face Gear Drives With a Spur Involute Pinion
,” NASA/CR-2000-209909.
13.
Tan
,
J.
,
2002
, “
Face Gearing With a Conical Involute Pinion Part 1. The Conical Involute Gear—Definition, Geometry and Generation
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct.2
, pp.
553
562
.
14.
Tan
,
J.
,
2003
, “
Face Gearing With a Conical Involute Pinion Part 2. The Face Gear—Meshing With the Pinion, Tooth Geometry and Generation
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Chicago, IL
,
Sept. 2–6
, pp.
297
306
.
15.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zanzi
,
C.
,
Pontiggia
,
M.
, and
Handschuh
,
R. F.
,
2002
, “
Face-Gear Drive With Spur Involute Pinion : Geometry, Generation by a Worm, Stress Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
25–26
), pp.
2785
2813
.
16.
Handschuh
,
R. F.
,
Lewicki
,
D. G.
,
Heath
,
G. F.
, and
Bossler
,
R. B.
,
1996
, “
Experimental Evaluation of Face Gears for Aerospace Drive System Applications
,”
7th ASME Power Transmission and Gearing Conference
,
San Diego, CA
,
Oct. 6–9
.
17.
Heath
,
G. F.
,
Slaughter
,
S. C.
,
Morris
,
M. T.
,
Fetty
,
J.
,
Lewicki
,
D. G.
, and
Fisher
,
D. J.
,
2009
, “
Face Gear Development Under the Rotorcraft Drive System for the 21st Century Program
,”
American Helicopter Society 65th Annual Forum
,
Grapevine, TX
,
May 27–29
.
18.
Guingand
,
M.
,
de Vaujany
,
J.-P.
, and
Jacquin
,
C.-Y.
,
2005
, “
Quasi-Static Analysis of a Face Gear Under Torque
,”
Comput. Meth. Appl. Mech. Eng.
,
194
(
39–41
), pp.
4301
4318
.
19.
Wang
,
Y.-Z.
,
Wu
,
C.-H.
,
Gong
,
K.
,
Wang
,
S.
,
Zhao
,
X.-F.
, and
Lv
,
Q.-J.
,
2012
, “
Loaded Tooth Contact Analysis of Orthogonal Face-Gear Drives
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
9
), pp.
2309
2319
.
20.
Peng
,
M.
,
DeSmidt
,
H.
,
Saribay
,
Z. B.
, and
Smith
,
E. C.
,
2011
, “
Parametric Instability of Face-Gear Drives With a Spur Pinion
,”
American Helicopter Society 67th Annual Forum
,
Virginia Beach, VA
,
May 3–5
, pp.
2478
2488
.
21.
Peng
,
M.
,
DeSmidt
,
H. A.
, and
Zhao
,
J.
,
2015
, “
Parametric Instability of Face-Gear Drives Meshing With Multiple Spur Pinions
,”
ASME J. Mech. Des.
,
137
(
12
), p.
123301
.
22.
Hu
,
Z.
,
Tang
,
J.
,
Chen
,
S.
, and
Lei
,
D.
,
2013
, “
Effect of Mesh Stiffness on the Dynamic Response of Face Gear Transmission System
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071005
.
23.
Chen
,
S.
,
Tang
,
J.
,
Chen
,
W.
,
Hu
,
Z.
, and
Cao
,
M.
,
2014
, “
Nonlinear Dynamic Characteristic of a Face Gear Drive With Effect of Modification
,”
Meccanica
,
49
(
5
), pp.
1023
1037
.
24.
Tang
,
J.
,
Hu
,
Z.
,
Chen
,
S.
, and
Lei
,
D.
,
2013
, “
Effects of Directional Rotation Radius and Transmission Error on the Dynamic Characteristics of Face Gear Transmission System
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
7
), pp.
1108
1118
.
25.
Hu
,
Z.
,
Tang
,
J.
,
Chen
,
S.
, and
Sheng
,
Z.
,
2015
, “
Coupled Translation-Rotation Vibration and Dynamic Analysis of Face Geared Rotor System
,”
J. Sound Vib.
,
351
, pp.
282
298
.
26.
Aydoğan
,
M. Ö.
,
Sarıbay
,
Z. B.
, and
Özgüven
,
H. N.
,
2017
, “
Dynamic Modelling of Split-Torque Face-Gear Drive Systems
,”
ASME IDETC/CIE 2017
,
Cleveland, OH
,
Aug. 6–9
.
27.
Zhao
,
N.
,
Li
,
W.
,
Hu
,
T.
,
Guo
,
H.
,
Zhou
,
R.
, and
Peng
,
Y.
,
2018
, “
Quasistatic Load Sharing Behaviours of Concentric Torque-Split Face Gear Transmission With Flexible Face Gear
,”
Math. Probl. Eng.
,
2018
, pp.
1
12
.
28.
Feng
,
G.
,
Xie
,
Z.
, and
Zhou
,
M.
,
2019
, “
Geometric Design and Analysis of Face-Gear Drive With Involute Helical Pinion
,”
Mech. Mach. Theory
,
134
, pp.
169
196
.
29.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.
30.
Liu
,
L.
, and
Zhang
,
J.
,
2019
, “
Meshing Characteristics of a Sphere–Face Gear Pair With Variable Shaft Angle
,”
Adv. Mech. Eng.
,
11
(
6
), pp.
1
10
.
31.
Dong
,
J.
,
Tang
,
J.
, and
Hu
,
Z.
,
2019
, “
Investigation of Assembly, Power Direction and Load Sharing in Concentric Face Gear Split-Torque Transmission System
,”
Meccanica
,
54
(
15
), pp.
2485
2506
.
32.
Dong
,
J.
,
Tang
,
J.
,
Hu
,
Z.
, and
Wang
,
Y.
,
2020
, “
A Semi-Analytical Method of Time-Varying Mesh Stiffness in Concentric Face Gear Split-Torque Transmission System
,”
J. Mech. Sci. Technol.
,
34
(
2
), pp.
589
602
.
33.
Li
,
W.
, and
Zhao
,
N.
,
2020
, “
Nonlinear Dynamic Characteristics of Face Gear Pair for Helicopter
,”
Vib. Procedia
,
30
, pp.
140
145
.
34.
Aydoğan
,
M. Ö.
,
2022
, “
Dynamic Modelling and Analysis of Split-Torque Face-Gear Systems
,”
Ph.D. dissertation
,
METU
,
Ankara
.
35.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040804
.
36.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2007
, “
A Nonlinear Dynamic Model for Planetary Gear Sets
,”
Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
,
221
(
4
), pp.
567
576
.
37.
Al-Shyyab
,
A.
,
Alwidyan
,
K.
,
Jawarneh
,
A.
, and
Tlilan
,
H.
,
2009
, “
Nonlinear Dynamic Behaviour of Compound Planetary Gear Trains: Model Formulation and Semi-Analytical Solution
,”
Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
,
223
(
3
), pp.
199
210
.
38.
Kahraman
,
A.
,
1994
, “
Dynamic Analysis of a Multi-Mesh Helical Gear Train
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
706
712
.
39.
Ferreira
,
J. V.
, and
Serpa
,
A. L.
,
2005
, “
Application of the Arc-Length Method in Nonlinear Frequency Response
,”
J. Sound Vib.
,
284
(
1–2
), pp.
133
149
.
40.
Dong
,
H.
,
Wang
,
L.
,
Zhang
,
H.
, and
Zhao
,
X.
,
2021
, “
Nonlinear Frequency Response Analysis of Double-Helical Gear Pair Based on the Incremental Harmonic Balance Method
,”
Shock Vib.
,
2021
(
2
), pp.
1
20
.
41.
Kahraman
,
A.
,
1992
, “
On the Response of a Preloaded Mechanical Oscillator With a Clearance: Period-Doubling and Chaos
,”
Nonlinear Dyn.
,
3
(
3
), pp.
183
198
.
42.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1995
, “
Steady State Forced Response of a Mechanical Oscillator With Combined Parametric Excitation and Clearance Type Non-Linearity
,”
J. Sound Vib.
,
185
(
5
), pp.
743
765
.
43.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Nonlinear Dynamic Analysis of a Multi-meshgear Train Usin Multi-term Harmonic Balance Method: Period-One Motions
,”
J. Sound Vib.
,
284
(
1–2
), pp.
151
172
.
44.
Celikay
,
A.
,
Donmez
,
A.
, and
Kahraman
,
A.
,
2021
, “
An Experimental and Theoretical Study of Subharmonic Resonances of a Spur Gear Pair
,”
J. Sound Vib.
,
515
.
45.
Beinstingel
,
A.
,
Parker
,
R. G.
, and
Marburg
,
S.
,
2022
, “
Experimental Measurement and Numerical Computation of Parametric Instabilities in a Planetary Gearbox
,”
J. Sound Vib.
,
536
(
117160
).
46.
Dai
,
L.
,
2008
,
Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments
,
World Scientific
,
Singapore
, pp.
41
59
.
47.
Moon
,
F. C.
,
1987
,
Chaotic Vibrations : An Introduction for Applied Scientists and Engineers
,
John Wiley & Sons
,
New York
, pp.
37
65
.
48.
Hartog
,
J. P. D.
,
1985
,
Mechanical Vibrations
,
Dover Publications
,
New York
, pp.
351
379
.
You do not currently have access to this content.