Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The flow dynamics and aeroacoustics propagation for flow-induced vibration system consisting of three-dimensional flow past an elastically-mounted square cylinder are investigated using the Ffowcs Williams–Hawkings method and detached eddy simulation model for the first time. Previous experimental and numerical data are compared with the results obtained by models implemented in this work to validate the correctness of the present hybrid modeling. The representative reduced velocities, spanning from lock-in to galloping regimes of concerned configurations, are chosen for investigation with the Reynolds number fixed at 6.67 × 104. The structural response of the present fluid-induced vibration (FIV) system exhibits the feature of “vortex-induced vibration–galloping instability,” and the pattern of wake dynamics is determined into “wake-locked instability” or “wake-unlocked instability“ based on the specific vortex-shedding behavior. Specifically, the wake dynamics of the FIV system at a reduced velocity of 30 involve spatially concentrated vortex-shedding behaviors compared to smaller reduced velocities, leading to the corresponding higher-frequency components in the pressure spectrum. Furthermore, the enhancement of structural amplitude leads to the increasing energy of acoustics pressure, but structural amplitude is not the only decisive factor in determining the power of sound pressure level. The impermeable surface could provide the turbulence-induced noise source which increases the power of broadband frequency. The phase differences of acoustics pressure fluctuation between loading and thickness noise components will suppress the overall noise energy and the variation of phase differences is correlated to the position of sound monitors as well as reduced velocities.

References

1.
Lee
,
J.
,
2010
, “
Hydrokinetic Power Harnessing Utilizing Vortex Induced Vibrations Through a Virtual C-K VIVACE Model
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
2.
Feng
,
C.
,
1968
, “
The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders
,” Ph.D. thesis,
The University of British Columbia
,
Vancouver, Canada
.
3.
Brika
,
D.
, and
Laneville
,
A.
,
1993
, “
Vortex-Induced Vibrations of a Long Flexible Circular Cylinder
,”
J. Fluid. Mech.
,
250
, pp.
481
508
.
4.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2017
, “
Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders in Flow Induced Motions: Effect of Spacing and Stiffness
,”
Renew. Energy
,
107
, pp.
61
80
.
5.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
.
6.
Modi
,
V. J.
, and
Munshi
,
S. R.
,
1998
, “
An Efficient Liquid Sloshing Damper for Vibration Control
,”
J. Fluids Struct.
,
12
(
8
), pp.
1055
1071
.
7.
Waals
,
O. J.
,
Phadke
,
A. C.
, and
Bultema
,
S.
, “
Flow Induced Motions on Multi Column Floaters
,”
ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
, pp.
669
678
.
8.
Chen
,
S.
,
2004
, “
Dynamic Performance of Bridges and Vehicles Under Strong Wind
,” Ph.D. thesis,
Louisiana State University
,
Baton Rouge, LA
.
9.
Cheng
,
Z.
,
Lien
,
F.-S.
,
Yee
,
E.
, and
Chen
,
G.
,
2022
, “
Vortex-Induced Vibration of a Circular Cylinder With Nonlinear Restoring Forces at Low-Reynolds Number
,”
Ocean Eng.
,
266
, p.
113197
.
10.
Cheng
,
Z.
,
Lien
,
F.-S.
,
Dowell
,
E. H.
,
Wang
,
R.
, and
Zhang
,
J. H.
,
2022
, “
Data-Driven Stability Analysis Via the Superposition of Reduced-Order Models for the Flutter of Circular Cylinder Submerged in Three-Dimensional Spanwise Shear Inflow at Subcritical Reynolds Number
,”
Phys. Fluids
,
34
(
12
), p.
123606
.
11.
Bourguet
,
R.
,
2020
, “
Two-Degree-of-Freedom Flow-Induced Vibrations of a Rotating Cylinder
,”
J. Fluid. Mech.
,
897
, p.
A31
.
12.
Pan
,
F.
,
Xu
,
Z.
,
Jin
,
L.
,
Pan
,
P.
, and
Gao
,
X.
,
2017
, “
Designed Simulation and Experiment of a Piezoelectric Energy Harvesting System Based on Vortex-Induced Vibration
,”
IEEE Trans. Ind. Appl.
,
53
(
4
), pp.
3890
3897
.
13.
Stappenbelt
,
B.
,
Johnstone
,
A. D.
, and
Anger
,
J. D. L.
, “
Vortex-Induced Vibration Marine Current Energy Harvesting
,”
Fluid-Structure-Sound Interactions and Control. Lecture Notes in Mechanical Engineering
,
Springer, Berlin, Heidelberg
,
Dec. 18
, Springer, pp.
401
406
.
14.
Rostami
,
A. B.
, and
Armandei
,
M.
,
2017
, “
Renewable Energy Harvesting by Vortex-Induced Motions: Review and Benchmarking of Technologies
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
193
214
.
15.
Yoshitake
,
Y.
,
Sueoka
,
A.
,
Yamasaki
,
M.
,
Sugimura
,
Y.
, and
Ohishi
,
T.
,
2004
, “
Quenching of Vortex-Induced Vibrations of Towering Structure and Generation of Electricity Using Hula-Hoops
,”
J. Sound Vib.
,
272
(
1–2
), pp.
21
38
.
16.
Sun
,
H.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renew. Energy
,
99
, pp.
936
959
.
17.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2019
, “
Flow-Induced Vibration of Tandem Circular Cylinders With Selective Roughness: Effect of Spacing, Damping and Stiffness
,”
Eur. J. Mech.-B/Fluids
,
74
, pp.
219
241
.
18.
Piñero
,
J.
,
2021
, VORTEX Bladeless. [EB/OL], https://vortexbladeless.com/ Accessed April 4.
19.
Zhao
,
D.
,
Hu
,
X.
,
Tan
,
T.
,
Yan
,
Z.
, and
Zhang
,
W.
,
2020
, “
Piezoelectric Galloping Energy Harvesting Enhanced by Topological Equivalent Aerodynamic Design
,”
Energy Convers. Manage.
,
222
, p.
113260
.
20.
Tucker Harvey
,
S.
,
Khovanov
,
I. A.
, and
Denissenko
,
P.
,
2019
, “
A Galloping Energy Harvester With Flow Attachment
,”
Appl. Phys. Lett.
,
114
(
10
), p.
104103
.
21.
Zhao
,
K.
,
Zhang
,
Q.
, and
Wang
,
W.
,
2019
, “
Optimization of Galloping Piezoelectric Energy Harvester With V-Shaped Groove in Low Wind Speed
,”
Energies
,
12
(
24
), p.
4619
.
22.
Mohamed
,
M.
,
2016
, “
Reduction of the Generated Aero-Acoustics Noise of a Vertical Axis Wind Turbine Using CFD (Computational Fluid Dynamics) Techniques
,”
Energy
,
96
, pp.
531
544
.
23.
Ye
,
X.
,
Hu
,
J.
,
Zheng
,
N.
, and
Li
,
C.
,
2023
, “
Numerical Study on Aerodynamic Performance and Noise of Wind Turbine Airfoils With Serrated Gurney Flap
,”
Energy
,
262
, p.
125574
.
24.
Cheng
,
Z.
,
Lien
,
F.-S.
,
Yee
,
E.
, and
Meng
,
H.
,
2022
, “
A Unified Framework for Aeroacoustics Simulation of Wind Turbines
,”
Renew. Energy
,
188
, pp.
299
319
.
25.
Wagner
,
S.
,
Bareiss
,
R.
, and
Guidati
,
G.
,
2012
,
Wind Turbine Noise
,
Springer Science & Business Media
,
Stuttgart
.
26.
Oguma
,
Y.
,
Yamagata
,
T.
, and
Fujisawa
,
N.
,
2013
, “
Measurement of Sound Source Distribution Around a Circular Cylinder in a Uniform Flow by Combined Particle Image Velocimetry and Microphone Technique
,”
J. Wind Eng. Ind. Aerodyn.
,
118
, pp.
1
11
.
27.
Xing
,
Y.
, and
Li
,
L.
,
2017
, “
Effect of Helical Cables on Cylinder Noise Control
,”
Appl. Acoust.
,
122
, pp.
152
155
.
28.
Li
,
L.
, and
Guo
,
H.
,
2019
, “
Experimental Investigation on the Noise Reduction Method of Helical Cables for a Circular Cylinder and Tandem Cylinders
,”
Appl. Acoust.
,
152
, pp.
79
87
.
29.
Jenkins
,
L.
,
Khorrami
,
M.
,
Choudhari
,
M.
, and
McGinley
,
C.
, “
Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise
,”
11th AIAA/CEAS Aeroacoustics Conference
,
Monterey, CA
,
May 23–25
, p.
2812
.
30.
Jenkins
,
L.
,
Neuhart
,
D.
,
McGinley
,
C.
,
Khorrami
,
M.
, and
Choudhari
,
M.
,
2006
, “
Measurements of Unsteady Wake Interference Between Tandem Cylinders
,”
36th AIAA Fluid Dynamics Conference and Exhibit
,
San Francisco, CA
,
June 5–8
, p.
3202
.
31.
Hutcheson
,
F. V.
, and
Brooks
,
T. F.
,
2012
, “
Noise Radiation From Single and Multiple Rod Configurations
,”
Int. J. Aeroacoust.
,
11
(
3–4
), pp.
291
333
.
32.
Inoue
,
O.
, and
Hatakeyama
,
N.
,
2002
, “
Sound Generation by a Two-Dimensional Circular Cylinder in a Uniform Flow
,”
J. Fluid. Mech.
,
471
, pp.
285
314
.
33.
Koopmann
,
G.
,
1967
, “
The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers
,”
J. Fluid. Mech.
,
28
(
3
), pp.
501
512
.
34.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
,
1974
, “
The Vortex-Street Wakes of Vibrating Cylinders
,”
J. Fluid. Mech.
,
66
(
3
), pp.
553
576
.
35.
Zdravkovich
,
M. M.
,
1982
, “
Modification of Vortex Shedding in the Synchronization Range
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
513
517
.
36.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder Part 1. Mechanisms of Phase Shift and Recovery in the Near Wake
,”
J. Fluid. Mech.
,
191
, pp.
197
223
.
37.
Karniadakis
,
G. E.
, and
Triantafyllou
,
G. S.
,
1989
, “
Frequency Selection and Asymptotic States in Laminar Wakes
,”
J. Fluid. Mech.
,
199
(
1
), pp.
441
469
.
38.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2002
, “
A Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
16
(
6
), pp.
773
794
.
39.
Zheng
,
Z.
, and
Zhang
,
N.
,
2008
, “
Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder
,”
J. Fluids Struct.
,
24
(
3
), pp.
382
399
.
40.
Ganta
,
N.
,
Mahato
,
B.
, and
Bhumkar
,
Y. G.
,
2019
, “
Analysis of Sound Generation by Flow Past a Circular Cylinder Performing Rotary Oscillations Using Direct Simulation Approach
,”
Phys. Fluids
,
31
(
2
), p.
026104
.
41.
Ganta
,
N.
,
Mahato
,
B.
, and
Bhumkar
,
Y. G.
, “
Characteristics of Sound Radiated Due to Flow Around a Rotationally Oscillating Cylinder
,”
Inter-Noise and Noise-Con Congress and Conference Proceedings, InterNoise19
,
Madrid, Spain
,
Sept. 30
, pp.
3341
3350
.
42.
Hattori
,
Y.
, and
Komatsu
,
R.
,
2017
, “
Mechanism of Aeroacoustic Sound Generation and Reduction in a Flow Past Oscillating and Fixed Cylinders
,”
J. Fluid. Mech.
,
832
, pp.
241
268
.
43.
Cheng
,
Z.
,
McConkey
,
R.
,
Yee
,
E.
, and
Lien
,
F.-S.
,
2023
, “
Numerical Investigation of Noise Suppression and Amplification in Forced Oscillations of Single and Tandem Cylinders in High Reynolds Number Turbulent Flows
,”
Appl. Math. Model.
,
117
, pp.
652
686
.
44.
Purohit
,
A.
,
Darpe
,
A. K.
, and
Singh
,
S.
,
2018
, “
Influence of Flow Velocity and Flexural Rigidity on the Flow Induced Vibration and Acoustic Characteristics of a Flexible Plate
,”
J. Vib. Control
,
24
(
11
), pp.
2284
2300
.
45.
Arif
,
I.
,
Lam
,
G. C.
,
Wu
,
D.
, and
Leung
,
R. C.
,
2020
, “
Passive Airfoil Tonal Noise Reduction by Localized Flow-Induced Vibration of an Elastic Panel
,”
Aerosp. Sci. Technol.
,
107
, p.
106319
.
46.
Naseer
,
M. R.
,
Arif
,
I.
,
Lam
,
G. C. Y.
, and
Leung
,
R. C.
,
2022
, “
Effect of Flow-Induced Surface Vibration on Deep Cavity Aeroacoustics
,”
28th AIAA/CEAS Aeroacoustics 2022 Conference
,
Southampton, UK
,
June 14–17
.
47.
Cheng
,
Z.
,
Lien
,
F.-S.
,
Yee
,
E.
, and
Zhang
,
J. H.
,
2022
, “
Mode Transformation and Interaction in Vortex-Induced Vibration of Laminar Flow Past a Circular Cylinder
,”
Phys. Fluids
,
34
(
3
), p.
033607
.
48.
Wu
,
Y.
,
Cheng
,
Z.
,
McConkey
,
R.
,
Lien
,
F.-S.
, and
Yee
,
E.
,
2022
, “
Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects
,”
Energies
,
15
(
22
), pp.
1
63
.
49.
Evangelinos
,
C.
,
Lucor
,
D.
, and
Karniadakis
,
G. E.
,
2000
, “
DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibration
,”
J. Fluids Struct.
,
14
(
3
), pp.
429
440
.
50.
Bourguet
,
R.
,
2020
, “
Vortex-Induced Vibrations of a Flexible Cylinder at Subcritical Reynolds Number
,”
J. Fluid. Mech.
,
902
, p.
R3
.
51.
Cheng
,
Z.
,
Lien
,
F.-S.
,
Dowell
,
E. H.
, and
Yee
,
E.
,
2023
, “
Triggering of Galloping in Structures at Low Reynolds Numbers
,”
J. Fluids Struct.
,
118
, p.
103860
.
52.
Strelets
,
M.
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8
, p.
879
.
53.
“OpenCFD Ltd., OpenFOAM: User Guide v2006, 2019. Available: https://www.openfoam.com/documentation/guides/latest/doc/”.
54.
Dullweber
,
A.
,
Leimkuhler
,
B.
, and
McLachlan
,
R.
,
1997
, “
Symplectic Splitting Methods for Rigid Body Molecular Dynamics
,”
J. Chem. Phys.
,
107
(
15
), pp.
5840
5851
.
55.
Wang
,
E.
,
Xu
,
W.
,
Gao
,
X.
,
Liu
,
L.
,
Xiao
,
Q.
, and
Ramesh
,
K.
,
2019
, “
The Effect of Cubic Stiffness Nonlinearity on the Vortex-Induced Vibration of a Circular Cylinder at Low Reynolds Numbers
,”
Ocean Eng.
,
173
, pp.
12
27
.
56.
Farassat
,
F.
, and
Brentner
,
K. S.
,
1988
, “
The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction
,”
J. Am. Helicopter Soc.
,
33
(
1
), pp.
29
36
.
57.
Wang
,
M.
,
Freund
,
J. B.
, and
Lele
,
S. K.
,
2006
, “
Computational Prediction of Flow-Generated Sound
,”
Annu. Rev. Fluid. Mech.
,
38
, pp.
483
512
.
58.
Farassat
,
F.
,
2007
, Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007–214853.
59.
Farassat
,
F.
,
1981
, “
Linear Acoustic Formulas for Calculation of Rotating Blade Noise
,”
AIAA J.
,
19
(
9
), pp.
1122
1130
.
60.
Farassat
,
F.
,
1975
, Theory of Noise Generation From Moving Bodies With an Application to Helicopter Rotors. NASA Langley Technical Report Server.
61.
Farassat
,
F.
, and
Brentner
,
K. S.
,
1998
, “
The Acoustic Analogy and the Prediction of the Noise of Rotating Blades
,”
Theor. Comput. Fluid Dyn.
,
10
(
1–4
), pp.
155
170
.
62.
Andrey
,
E.
,
Ilya
,
E.
,
Matvey
,
K.
,
Michael
,
K.
, and
Sergei
,
S.
,
2015
, “
Development of a Dynamic Library for Computational Aeroacoustics Applications Using the OpenFOAM Open Source Package
,”
Procedia Comput. Sci.
,
66
, pp.
150
157
.
63.
Prasanth
,
T.
, and
Mittal
,
S.
,
2008
, “
Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid. Mech.
,
594
, pp.
463
491
.
64.
Chizfahm
,
A.
, and
Jaiman
,
R.
,
2022
, “
Deep Learning for Predicting Frequency Lock-In of a Freely Vibrating Sphere
,”
Phys. Fluids
,
34
(
12
), p.
127123
.
65.
Chen
,
W.
,
Ji
,
C.
,
Alam
,
M. M.
, and
Yan
,
Y.
,
2022
, “
Three-Dimensional Flow Past Two Stationary Side-by-Side Circular Cylinders
,”
Ocean Eng.
,
244
, p.
110379
.
66.
Mittal
,
S.
,
2004
, “
Three-dimensional Instabilities in Flow Past a Rotating Cylinder
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
89
95
.
67.
Shiau
,
Y.-H.
,
Peng
,
Y. F.
,
Hwang
,
R. R.
, and
Hu
,
C. K.
,
1999
, “
Multistability and Symmetry Breaking in the Two-Dimensional Flow Around a Square Cylinder.
,”
Phys. Rev. E, Stat. Phys., Plasm. Fluids Rel. Interdiscipl. Top.
,
60
(
5 Pt B
), pp.
6188
6191
.
68.
Khalak
,
A.
, and
Williamson
,
C.
,
1997
, “
Fluid Forces and Dynamics of a Hydroelastic Structure With Very Low Mass and Damping
,”
J. Fluids Struct.
,
11
(
8
), pp.
973
982
.
69.
Hover
,
F.
,
Miller
,
S.
, and
Triantafyllou
,
M.
,
1997
, “
Vortex-Induced Vibration of Marine Cables: Experiments Using Force Feedback
,”
J. Fluids Struct.
,
11
(
3
), pp.
307
326
.
70.
Nguyen
,
V.-T.
, and
Nguyen
,
H. H.
,
2016
, “
Detached Eddy Simulations of Flow Induced Vibrations of Circular Cylinders at High Reynolds Numbers
,”
J. Fluids Struct.
,
63
, pp.
103
119
.
71.
Khan
,
N. B.
,
Ibrahim
,
Z.
,
Nguyen
,
L. T. T.
,
Javed
,
M. F.
, and
Jameel
,
M.
,
2017
, “
Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder at High Reynolds Number (Re=104) and Low Mass Ratio Using the RANS Code
,”
PLoS One.
,
12
(
10
), pp.
1
17
.
72.
Rajamuni
,
M. M.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
,
2018
, “
Transverse Flow-Induced Vibrations of a Sphere
,”
J. Fluid. Mech.
,
837
, pp.
931
966
.
73.
Mannini
,
C.
,
Marra
,
A.
, and
Bartoli
,
G.
,
2014
, “
VIV–Galloping Instability of Rectangular Cylinders: Review and New Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
132
, pp.
109
124
.
74.
Zhang
,
W.
,
Li
,
X.
,
Ye
,
Z.
, and
Jiang
,
Y.
,
2015
, “
Mechanism of Frequency Lock-In in Vortex-Induced Vibrations at Low Reynolds Numbers
,”
J. Fluid. Mech.
,
783
, pp.
72
102
.
75.
Li
,
X.
,
Lyu
,
Z.
,
Kou
,
J.
, and
Zhang
,
W.
,
2019
, “
Mode Competition in Galloping of a Square Cylinder at Low Reynolds Number
,”
J. Fluid. Mech.
,
867
, pp.
516
555
.
76.
Cheng
,
Z.
,
Lien
,
F. S.
,
Yee
,
E.
, and
Zhang
,
J. H.
,
2022
, “
Mode Transformation and Interaction in Vortex-Induced Vibration of Laminar Flow Past a Circular Cylinder
,”
Phys. Fluids.
,
34
(
3
), p.
033607
.
77.
Zhao
,
J.
,
Leontini
,
J. S.
,
Lo Jacono
,
D.
, and
Sheridan
,
J.
,
2014
, “
Fluid-Structure Interaction of a Square Cylinder at Different Angles of Attack
,”
J. Fluid. Mech.
,
747
, pp.
688
721
.
78.
Deraemaeker
,
A.
, and
Soltani
,
P.
,
2017
, “
A Short Note on Equal Peak Design for the Pendulum Tuned Mass Dampers
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
231
(
1
), pp.
285
291
.
79.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid. Mech.
,
525
, pp.
1
26
.
80.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
(
1
), pp.
57
96
.
81.
Fujisawa
,
N.
, and
Takeda
,
G.
,
2003
, “
Flow Control Around a Circular Cylinder by Internal Acoustic Excitation
,”
J. Fluids Struct.
,
17
(
7
), pp.
903
913
.
82.
Dong
,
S.
,
Karniadakis
,
G. E.
,
Ekmekci
,
A.
, and
Rockwell
,
D.
,
2006
, “
A Combined Direct Numerical Simulation–Particle Image Velocimetry Study of the Turbulent Near Wake
,”
J. Fluid. Mech.
,
569
, pp.
185
207
.
83.
Bres
,
G.
,
Pérot
,
F.
, and
Freed
,
D.
,
2010
, “
A Ffowcs Williams-Hawkings Solver for Lattice-Boltzmann Based Computational Aeroacoustics
,” 16th AIAA/CEAS Aeroacoustics Conference, June 7–9,
Stockholm
,
Sweden
, p.
3711
.
84.
Lockard
,
D.
,
Khorrami
,
M.
,
Choudhari
,
M.
,
Hutcheson
,
F.
,
Brooks
,
T.
, and
Stead
,
D.
,
2007
, “
Tandem Cylinder Noise Predictions
,” 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), Rome, Italy, May 21–23, p.
3450
.
You do not currently have access to this content.