Abstract

The fault diagnosis of slewing bearings is crucial for modern industry. However, operational constraints and high signal acquisition costs limit the number of available diagnostic samples, leading to decreased diagnostic accuracy. This study proposes a novel fault diagnosis method for slewing bearings based on audible sound signals, termed Time Generative Adversarial Network (Time GAN)–Tabular Prior-Data Fit Network (TabPFN). It is a hybrid approach that integrates the capabilities of Time GANs and the TabPFN. The method leverages the feature enhancement capabilities of Time GAN and the probabilistic modeling strengths of TabPFN to improve fault diagnosis accuracy. This method utilizes low-cost, easily obtainable audible sound signals as input. By employing Time GAN, the original data features are enhanced, generating new training samples. Subsequently, the TabPFN framework constructs a substantial amount of synthetic data with causal relationships, facilitating Bayesian inference. Experimental results demonstrate that the proposed method effectively identifies various fault types with small-sample sizes, achieving an accuracy of 96.5%, approximately 10% higher than existing algorithms. Furthermore, this method exhibits high diagnostic accuracy and strong generalization capabilities, making it a robust solution for slewing-bearing fault diagnosis.

References

1.
Li
,
W.
,
Zhang
,
L.
, and
Liang
,
W.
,
2017
, “
An Accident Causation Analysis and Taxonomy (ACAT) Model of Complex Industrial System From Both System Safety and Control Theory Perspectives
,”
Saf. Sci.
,
92
, pp.
94
103
.
2.
Guo
,
C.
,
Khan
,
F.
, and
Imtiaz
,
S.
,
2018
, “
Risk Assessment of Process System Considering Dependencies
,”
J. Loss Prevent. Process Ind.
,
55
, pp.
204
212
.
3.
Wang
,
Y.
,
Xiang
,
J.
,
Markert
,
R.
, and
Liang
,
M.
,
2016
, “
Spectral Kurtosis for Fault Detection, Diagnosis and Prognostics of Rotating Machines: A Review With Applications
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
679
698
.
4.
Wang
,
F.
,
Liu
,
C.
,
Su
,
W.
,
Xue
,
Z.
,
Li
,
H.
, and
Han
,
Q.
,
2017
, “
Condition Monitoring and Fault Diagnosis Methods for Low-Speed and Heavy-Load Slewing Bearings: A Literature Review
,”
J. Vibroeng.
,
19
(
5
), pp.
3429
3444
.
5.
Caesarendra
,
W.
,
Kosasih
,
P. B.
,
Tieu
,
A. K.
,
Moodie
,
C. A. S.
, and
Choi
,
B.-K.
,
2013
, “
Condition Monitoring of Naturally Damaged Slow Speed Slewing Bearing Based on Ensemble Empirical Mode Decomposition
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2253
2262
.
6.
Caesarendra
,
W.
,
Kosasih
,
B.
,
Tieu
,
A. K.
, and
Moodie
,
C. A. S.
,
2014
, “
Circular Domain Features Based Condition Monitoring for Low Speed Slewing Bearing
,”
Mech. Syst. Signal Process.
,
45
(
1
), pp.
114
138
.
7.
Žvokelj
,
M.
,
Zupan
,
S.
, and
Prebil
,
I.
,
2016
, “
EEMD-Based Multiscale ICA Method for Slewing Bearing Fault Detection and Diagnosis
,”
J. Sound Vib.
,
370
, pp.
394
423
.
8.
Mishra
,
C.
,
Samantaray
,
A. K.
, and
Chakraborty
,
G.
,
2017
, “
Rolling Element Bearing Fault Diagnosis Under Slow Speed Operation Using Wavelet de-Noising
,”
Measurement
,
103
, pp.
77
86
.
9.
Wang
,
F.
,
Liu
,
C.
,
Su
,
W.
,
Xue
,
Z.
,
Han
,
Q.
, and
Li
,
H.
,
2018
, “
Combined Failure Diagnosis of Slewing Bearings Based on MCKD-CEEMD-ApEn
,”
Shock Vib.
,
2018
(
1
), p.
6321785
.
10.
Xiong
,
C.
, and
Dai
,
P.
,
2019
, “
Fault Diagnosis of Caster Ladle Turret Based on Fuzzy Decision
,”
2019 14th International Conference on Computer Science & Education (ICCSE)
,
Toronto, Ontario, Canada
,
Aug. 19–21
, Vol. 27, pp.
948
953
.
11.
Wang
,
Y.
,
Yang
,
Y.
, and
He
,
Z.
,
2022
, “
Signal Processing Method for Condition Monitoring of Portal Crane
,”
2022 International Symposium on Sensing and Instrumentation in 5G and IoT Era (ISSI)
,
Shanghai, China
,
Nov. 17–18
, Vol. 45, pp.
191
197
.
12.
Liu
,
Y.
,
Jin
,
Y.
,
Cui
,
G.
, and
Shen
,
G.
,
2023
, “
Study and Application on the Early Damage Signal Characteristics of Ultra-Low-Speed and Heavy-Load Rolling Bearings of Large Amusement Machinery
,”
Insight—Non-Destruct. Test. Cond. Monitor.
,
65
(
5
), pp.
270
277
.
13.
Pan
,
Y.
,
Wang
,
H.
,
Chen
,
J.
, and
Hong
,
R.
,
2023
, “
Fault Recognition of Large-Size Low-Speed Slewing Bearing Based on Improved Deep Belief Network
,”
J. Vib. Control
,
29
(
11–12
), pp.
2829
2841
.
14.
Wang
,
F.
,
Tang
,
T.
,
Yin
,
J.
,
Li
,
Y.
, and
Ren
,
F.
,
2018
, “
A Signal Segmentation and Feature Fusion Based RUL Prediction Method for Railway Point System
,”
2018 21st International Conference on Intelligent Transportation Systems (ITSC)
,
Maui, HI
,
Nov. 4–7
, Vol. 99, pp.
2303
2308
.
15.
Sun
,
Y.
,
Cao
,
Y.
,
Xie
,
G.
, and
Wen
,
T.
,
2020
, “
Condition Monitoring for Railway Point Machines Based on Sound Analysis and Support Vector Machine
,”
Chin. J. Electron.
,
29
(
4
), pp.
786
792
.
16.
Yuan
,
C.
,
Yuhan
,
Z.
, and
Yongkui
,
S.
,
2021
, “
Fault Diagnosis of Turnout Switch Machine Based
,”
2021 Third International Workshop on Structural Health Monitoring for Railway System (IWSHM-RS 2021)
,
Qingdao, China
,
Nov. 4–5
.
17.
Kingma
,
D. P.
, and
Welling
,
M.
,
2022
, “Auto-Encoding Variational Bayes,” arXiv:1312.6114.
18.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Neural Information Processing Systems (NeurIPS)
,
Montreal, Canada
,
Dec. 8–13
.
19.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
20.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
SMOTE: Synthetic Minority Over-Sampling Technique
,”
J. Artif. Intell. Res.
,
16
, pp.
321
357
.
21.
Dai
,
W.
,
Yang
,
Q.
,
Xue
,
G.-R.
, and
Yu
,
Y.
,
2007
, “
Boosting for Transfer Learning
,”
Proceedings of the 24th International Conference on Machine Learning. ICML ‘07 & ILP ‘07: The 24th Annual International Conference on Machine Learning Held in Conjunction with the 2007 International Conference on Inductive Logic Programming
,
Corvallis, OR
,
June 20–24
, pp.
193
200
.
22.
Zhang
,
T.
,
Chen
,
J.
,
Li
,
F.
,
Zhang
,
K.
,
Lv
,
H.
,
He
,
S.
, and
Xu
,
E.
,
2021
, “
Intelligent Fault Diagnosis of Machines With Small & Imbalanced Data: A State-of-the-Art Review and Possible Extensions
,”
ISA Trans.
,
119
, pp.
157
171
.
23.
Liang
,
C.
, and
P
,
W.
,
2023
, “
Development and Application of the Latest Generation Against the Network of GAN
,”
J. Electron. Meas. Instrum.
,
34
(
6
), pp.
70
78
.
24.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
25.
Yoon
,
J.
,
Jarrett
,
D.
, and
van der Schaar
,
M.
,
2019
, “
Time-Series Generative Adversarial Networks
,”
Neural Information Processing Systems (NeurIPS 2019)
,
Vancouver, Canada
,
Dec. 8–14
.
26.
Hollmann
,
N.
,
Müller
,
S.
,
Eggensperger
,
K.
, and
Hutter
,
F.
,
2023
, “TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second,” arXiv:2207.01848.
27.
Müller
,
S.
,
Hollmann
,
N.
,
Arango
,
S. P.
,
Grabocka
,
J.
, and
Hutter
,
F.
,
2024
, “Transformers Can Do Bayesian Inference,” arXiv:2112.10510.
28.
Jefferys
,
W. H.
, and
Berger
,
J. O.
,
1992
, “
Ockham’s Razor and Bayesian Analysis
,”
Am. Sci.
,
80
(
1
), pp.
64
72
.
You do not currently have access to this content.